Keyword

EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > ANIMALS/INVERTEBRATES > ARTHROPODS > CRUSTACEANS > OSTRACODS

17 record(s)
 
Type of resources
Topics
Keywords
Contact for the resource
Provided by
From 1 - 10 / 17
  • This data record has been compiled for a statistical methods study, conducted by Abigael Proctor as part of her PhD research in 2018. The data in this record have been used to showcase a new statistical method for determining no effect concentration (NEC). The study uses the data in this record to compare NEC and LCx estimates for copper in four Antarctic marine invertebrate species. The data associated with this record are a subset of four existing larger datasets: 1. amphipod: AAS_2933_Orchomenella_pinguides_Sensitivity_metals_Davis_2010-11 2. copepod: AAS_4100_Toxicity_Copepods 3. gastropod: AAS_2933_MetaToxicityMarine_JuvenileGastropods_Kingston2007 4. ostracod: AAS_2933_MetalToxicityMarine_BrownOstracods_Kingston2007 Subset details are described in the excel file provided.

  • These are the scanned electronic copies of field and lab books used at Casey Station, Davis Station, Macquarie Island and Kingston between 2007 and 2012 as part of ASAC (AAS) project 2933 - Developing water and sediment quality guidelines for Antarctica: Responses of Antarctic marine biota to contaminants.

  • Metadata record for data from AAS (ASAC) Project 2933. While it is generally thought that Antarctic organisms are highly sensitive to pollution, there is little data to support or disprove this. Such data is essential if realistic environmental guidelines, which take into account unique physical, biological and chemical characteristics of the Antarctic environment, are to be developed. Factors that modify bioavailability, and the effects of common contaminants on a range of Antarctic organisms from micro-algae to macro-invertebrates will be examined. Risk assessment techniques developed will provide the scientific basis for prioritising contaminated site remediation activities in marine environments, and will contribute to the development of guidelines specific to Antarctica. Juvenile Gastropod toxicity tests, Kingston 2007 During 2007 a series of toxicity tests, using Antarctic marine invertebrates, were conducted at Australian Antarctic Division laboratories in Kingston, Tasmania, to test the sensitivity of Antarctic nearshore biota to a range of common metal contaminants. This data record describes two such tests, using juveniles of the microgastropod Skenella paludionoides. The first test (T01) was a 14 day test (start date: 20/08/2007) using juveniles less than 7 days old. The second test (T02) was a 12 week test (start date: 10/09/2007) using juveniles of the same cohort, that were less than 28 days at the commencement of the test. A range of concentrations of three single metals (cadmium, copper and zinc) were applied as test treatments to determine this species sensitivity to these common metal contaminants. T01 included all three metals, T02 used copper and zinc only. Data are provided in the excel file: CaseyKingston0607_Microgastropod.xlsx This file includes descriptive test details, test data and measured metal concentrations of test solutions. Scanned copies of laboratory notebook and test scoresheets are provided in PDF files: - CKing_ Ecotox Kingston 0607.pdf - Kingston07-microgastropod-juv-T01.pdf

  • Metadata record for data from AAS (ASAC) Project 2933. While it is generally thought that Antarctic organisms are highly sensitive to pollution, there is little data to support or disprove this. Such data is essential if realistic environmental guidelines, which take into account unique physical, biological and chemical characteristics of the Antarctic environment, are to be developed. Factors that modify bioavailability, and the effects of common contaminants on a range of Antarctic organisms from micro-algae to macro-invertebrates will be examined. Risk assessment techniques developed will provide the scientific basis for prioritising contaminated site remediation activities in marine environments, and will contribute to the development of guidelines specific to Antarctica. Brown Ostracod toxicity tests, Kingston 2007 Test animals were collected from near shore environments at Casey Station, East Antarctica during Dec 2006 - Jan 2007, and transported to culturing facilities at the Australian Antarctic Division in Tasmania, where tests were conducted during 2007. The test animals were exposed to metals in non-renewable static tests in vials containing 50 mL of the test solution at ambient Antarctic coastal salinity of 34 ppt. Tests were held in temperature controlled cabinets (incubators) at a temperature of 0, 2 or 4 degrees C (+/- approximately 1 degrees C). Ten test animals were introduced into each of 3 to 5 replicate vials per treatment at test commencement, and were exposed for 10 weeks during which periodic observations were made. Test solutions were renewed in weekly water changes. Periodic observations (time since start of test) are given in hr (hours), d (days) or w (weeks). At each observation time, test animals were scored in one of the Endpoint categories described on each worksheet. Each worksheet provides data for a particular test taxa (Brown Ostracods - taxonomy to be verified) for a given test number (T01, T02, T03, T04, T05,) and a given metal contaminant (copper, zinc, cadmium and lead). Test information is provided in the first 14 rows of each worksheet, e.g. Site of collection, Test start date, Endpoint categories etc. ASU = artificial settlement units (plastic scourers used by Sarah Richards, which had been deployed in Newcomb Bay in approximately the year 2000). Concentration micro grams per litre are nominal concentrations. Measured concentrations are provided in the file: Brown Ostracod_chemistry.xls, as described below. Test temperature was 0 degrees C unless otherwise stated. Unit for all temperature data are degrees C. See the readme file in the download for more information.

  • Depth related changes in the composition of infaunal invertebrate communities were investigated at two sites in the Windmill Islands around Casey station, East Antarctica, during the 2006/07 summer. Sediment cores (10cm deep x 10cm diameter) were collected from 4 depths (7m, 11m, 17, and 22m) from each of three transects at two sites (McGrady Cove and O'Brien Bay 1). Cores were sieved through a 500 micron mesh and extracted fauna were preserved in 8% formalin and were later counted and identified to species or to morphospecies established through previous infaunal research at Casey. This work was conducted as part of ASAC 2201 (ASAC_2201).

  • Human impacts threaten not only species, but also entire ecosystems. Ecosystems under stress can collapse or transition into different states, potentially reducing biodiversity at a variety of scales. Here we examine the vulnerability of shallow invertebrate-dominated ecosystems on polar seabeds, which may be threatened for several reasons. These unique communities consist of dark-adapted animals that rely on almost year-round sea-ice cover to create low-light shallow marine environments. Climate change is likely to cause early sea-ice break-out in some parts of Antarctica, which will dramatically increase the amount of light reaching the seabed. This will potentially result in ecological regime shifts, where invertebrate-dominated communities are replaced by macroalgal beds. Habitat for these endemic invertebrate ecosystems is globally rare, and the fragmented nature of their distribution along Antarctic coast increases their sensitivity to change. At the same time, human activities in Antarctica are concentrated in areas where these habitats occur, compounding potential impacts. While there are clear mechanisms for these threats, lack of knowledge about the current spatial distribution of these ecosystems makes it difficult to predict the extent of ecosystem loss, and the potential for recovery. In this paper we describe shallow ice-covered ecosystems, their association with the environment, and the reasons for their vulnerability. We estimate their spatial distribution around Antarctica using sea-ice and bathymetric data, and apply the IUCN Red List of Ecosystems criteria to formally assess their vulnerability. We conclude that shallow ice-covered ecosystems should be considered near threatened to vulnerable in places, although the magnitude of risk is spatially variable. This dataset comprises two files. Both are provided in netCDF format in polar stereographic project (see nc file for projection details). light_budget_6km.nc : this gives the estimated annual light budget (in mol photons/m^2/year) at the surface of the water column, having been adjusted for sea ice cover (see paper for details). This is calculated on the 6.25km grid associated with the sea ice concentration data. benthic_light_500m.nc : this gives the estimated annual light budget (in mol photons/m^2/year) at the sea floor, having been further adjusted for water depth. It is provided on a 500m grid (as per the IBCSO bathymetry used). Areas deeper than 200m are given no-data values, and areas outside of the coverage of the sea ice grid are assigned a value of -999. See paper for details.

  • Infaunal marine invertebrates were collected from inside and outside of patches of white bacterial mats from several sites in the Windmill Islands, Antarctica, around Casey station during the 2006-07 summer. Samples were collected from McGrady Cove inner and outer, the tide gauge near the Casey wharf, Stevenson's Cove and Brown Bay inner. Sediment cores of 10cm depth and 5cm diameter were collected by divers using a PVC corer from inside (4 cores) and outside (4 cores) each bacterial patch. The size of each patch varied from site to site. Cores were sieved at 500 microns and the extracted fauna preserved in 4 percent neutral buffered formalin. All fauna were counted and identified to species where possible or assigned to morphospecies based on previous infaunal sampling around Casey. An excel spreadsheet is available for download at the URL given below. The spreadsheet does not represent the complete dataset, and is only the bacterial mat infauna data. Regarding the infauna dataset: - in - in the mat or patch of bacteria and out is in the "normal" sediment surrounding the patch without evidence of any bacterial mat presence. - Patch numbers were allocated to ensure there was no confusion between patches in the same area. - Fauna names are our identification codes for each species. Some we have confirmed identifications for, some not. Species names, where we have them and as we get them, are listed against these codes in the Casey marine soft-sediment fauna identification guide. This work was completed as part of ASAC 2201 (ASAC_2201).

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.

  • Sediment Recruitment Experiment 4 (SRE4) was a large, long term (5 year) field experiment run at Casey Station (from 2001 to 2006) testing the effects of 4 different hydrocarbons on marine sediment ecosystems. Four different types of hydrocarbons were individually mixed with defaunated marine sediments and deployed in trays on the seabed at O'Brien Bay-1. Trays were collected after deployment periods of 5 weeks, 56 weeks, 62 weeks, 2 years and 5 years. In addition there was a bioturbation treatment using the burrowing urchin Abatus (at 56 weeks only). Samples were collected from 4 replicate trays of each treatment at each sampling time. Analyses were done of sediment hydrocarbon chemistry, microbial communities, meiofaunal communities, macrofaunal communities and diatom communities. The hydrocarbon treatments were: a synthetic Mobil lubricating oil; the same Mobil lubricating oil after 125? hours use in a vehicle engine; a Fuchs synthetic lubricating oil marketed as highly biodegradable; and Special Antarctic Blend diesel fuel (SAB). A control uncontaminated sediment treatment was used for comparison.